Beyond mirkwood: Enhancing SED Modeling with Conformal Predictions

Author:

Gilda Sankalp1ORCID

Affiliation:

1. ML Collective, 22 Saturn St., San Francisco, CA 94114, USA

Abstract

Traditional spectral energy distribution (SED) fitting techniques face uncertainties due to assumptions in star formation histories and dust attenuation curves. We propose an advanced machine learning-based approach that enhances flexibility and uncertainty quantification in SED fitting. Unlike the fixed NGBoost model used in mirkwood, our approach allows for any scikit-learn-compatible model, including deterministic models. We incorporate conformalized quantile regression to convert point predictions into error bars, enhancing interpretability and reliability. Using CatBoost as the base predictor, we compare results with and without conformal prediction, demonstrating improved performance using metrics such as coverage and interval width. Our method offers a more versatile and accurate tool for deriving galaxy physical properties from observational data.

Publisher

MDPI AG

Reference28 articles.

1. MIRKWOOD: Fast and accurate SED modeling using machine learning;Gilda;Astrophys. J.,2021

2. Gilda, S., Lower, S., and Narayanan, D. (2024, January 02). MIRKWOOD: SED Modeling Using Machine Learning; Astrophysics Source Code Library, Record ascl:2102.017. Available online: https://ui.adsabs.harvard.edu/abs/2021ascl.soft02017G/abstract.

3. SED Analysis using Machine Learning Algorithms;Gilda;Am. Astron. Soc. Meet. Abstr.,2021

4. Narayanan, D., Gilda, S., and Lower, S. (2024, January 02). SED Fitting in the Modern Era: Fast and Accurate Machine-Learning Assisted Software. HST Proposal. Cycle 29, ID. #16626. Available online: https://archive.stsci.edu/proposal_search.php?id=16626&mission=hst.

5. Simultaneous estimation of photometric redshifts and sed parameters: Improved techniques and a realistic error budget;Acquaviva;Astrophys. J.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3