Effect of Particle Size on the Physical Properties of PLA/Potato Peel Composites

Author:

Miller Katharina12ORCID,Reichert Corina L.1ORCID,Loeffler Myriam2ORCID,Schmid Markus1ORCID

Affiliation:

1. Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany

2. Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium

Abstract

In recent years, agricultural by-product fillers have been investigated in composites to influence the physical properties of the packaging material, increase biodegradability, and reduce costs. In general, the properties of composites are mainly influenced by the type, amount, and size of fillers. The aim of this study was to characterize potato peel particles as a filler in a poly(lactic acid) (PLA) matrix and to determine the effect of particle size on the physical properties of the composite. Therefore, different fractions of potato peel powder (0–53 μm, 125–250 μm, and 315–500 μm) were incorporated into PLA matrix via compounding and injection-molding. Microscopic analysis of the injection-molded samples revealed that the average particle shape did not differ between the different fractions. Overall, increasing the particle size of potato peel particles resulted in increased stiffness and decreased ductility. The cold crystallization temperature and water vapor transmission rate of the composites were independent of particle size but increased upon the incorporation of potato peel particles. In conclusion, the effect of particle incorporation on packaging-related properties was higher than the effect of using different particle size fractions. This means that potato peel particles, regardless of their particle size distribution, are promising fillers for composites, with the potential to improve biodegradability, maintain some level of protection for the packaged product, and reduce the cost of the composites.

Funder

Heinrich-Stockmeyer Stiftung

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3