Development of Threshold Levels and a Climate-Sensitivity Model of the Hydrological Regime of the High-Altitude Catchment of the Western Himalayas, Pakistan

Author:

Saifullah ,Liu ,Tahir ,Zaman ,Ahmad ,Adnan ,Chen ,Ashraf ,Mehmood

Abstract

Water shortages in Pakistan are among the most severe in the world, and its water resources are decreasing significantly due to the prevailing hydro-meteorological conditions. We assessed variations in meteorological and hydrological variables using innovative trend analysis (ITA) and traditional trend analysis methods at a practical significance level, which is also of practical interest. We developed threshold levels of hydrological variables and developed a non-parametric climate-sensitivity model of the high-altitude catchment of the western Himalayas. The runoff of Zone I decreased, while the temperature increased and the precipitation increased significantly. In Zone II, the runoff and temperature increased but the precipitation decreased. A two-dimensional visualization of the Pardé coefficient showed extreme drought events, and indicated greater sensitivity of the hydrological regime to temperature than to precipitation. The threshold levels of runoff for Zones I and II were 320 and 363 mm using the Q80 fixed method, while the mean runoff amounts were estimated to be 79.95 and 55.61 mm, respectively. The transient threshold levels varied by month, and the duration of droughts in Zones I and II ranged from 26.39 to 78.98 days. The sensitivity of the hydrological regime was estimated based on a modified climate-elasticity model (εp = 0.11–0.23, εt = −0.04–2.39) for Zones I and II, respectively. These results highlight the sensitivity of the hydrological regime to temperature, which influences the melting process. However, it is important to establish thresholds for hydrological variables and understand the climate sensitivity of the hydrological regime of the entire basin, so that policy makers and water managers can make sustainable water-resource-management decisions for this region.

Funder

National Natural Science Foundation of China

International Centre for Integrated Mountain Developmen

Higher Education Commission, Pakistan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3