Macrofluidic Coaxial Flow Platforms to Produce Tunable Magnetite Nanoparticles: A Study of the Effect of Reaction Conditions and Biomineralisation Protein Mms6

Author:

Norfolk Laura,Rawlings AndreaORCID,Bramble Jonathan,Ward Katy,Francis Noel,Waller Rachel,Bailey Ashley,Staniland SarahORCID

Abstract

Magnetite nanoparticles’ applicability is growing extensively. However, simple, environmentally-friendly, tunable synthesis of monodispersed iron-oxide nanoparticles is challenging. Continuous flow microfluidic synthesis is promising; however, the microscale results in small yields and clogging. Here we present two simple macrofluidics devices (cast and machined) for precision magnetite nanoparticle synthesis utilizing formation at the interface by diffusion between two laminar flows, removing aforementioned issues. Ferric to total iron was varied between 0.2 (20:80 Fe3+:Fe2+) and 0.7 (70:30 Fe3+:Fe2+). X-ray diffraction shows magnetite in fractions from 0.2–0.6, with iron-oxide impurities in 0.7, 0.2 and 0.3 samples and magnetic susceptibility increases with increasing ferric content to 0.6, in agreement with each other and batch synthesis. Remarkably, size is tuned (between 20.5 nm to 6.5 nm) simply by increasing ferric ions ratio. Previous research shows biomineralisation protein Mms6 directs magnetite synthesis and controls size, but until now has not been attempted in flow. Here we report Mms6 increases magnetism, but no difference in particle size is seen, showing flow reduced the influence of Mms6. The study demonstrates a versatile yet simple platform for the synthesis of a vast range of tunable nanoparticles and ideal to study reaction intermediates and additive effects throughout synthesis.

Funder

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3