A Video Summarization Model Based on Deep Reinforcement Learning with Long-Term Dependency

Author:

Wang XuORCID,Li Yujie,Wang Haoyu,Huang Longzhao,Ding Shuxue

Abstract

Deep summarization models have succeeded in the video summarization field based on the development of gated recursive unit (GRU) and long and short-term memory (LSTM) technology. However, for some long videos, GRU and LSTM cannot effectively capture long-term dependencies. This paper proposes a deep summarization network with auxiliary summarization losses to address this problem. We introduce an unsupervised auxiliary summarization loss module with LSTM and a swish activation function to capture the long-term dependencies for video summarization, which can be easily integrated with various networks. The proposed model is an unsupervised framework for deep reinforcement learning that does not depend on any labels or user interactions. Additionally, we implement a reward function (R(S)) that jointly considers the consistency, diversity, and representativeness of generated summaries. Furthermore, the proposed model is lightweight and can be successfully deployed on mobile devices and enhance the experience of mobile users and reduce pressure on server operations. We conducted experiments on two benchmark datasets and the results demonstrate that our proposed unsupervised approach can obtain better summaries than existing video summarization methods. Furthermore, the proposed algorithm can generate higher F scores with a nearly 6.3% increase on the SumMe dataset and a 2.2% increase on the TVSum dataset compared to the DR-DSN model.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Guangxi Science and Technology Major Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Caption Generation using Deep Learning For Video Summarization Applications;International Journal of Advanced Computer Science and Applications;2024

2. A review for video summarization based on trajectories features;AIP Conference Proceedings;2024

3. Unsupervised Video Summarization Based on Deep Reinforcement Learning with Interpolation;Sensors;2023-03-23

4. Automatic video summarization and classification by CNN model: Deep learning;2023 International Conference on Computer Communication and Informatics (ICCCI);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3