Evaluation by Means of Electrochemical Impedance Spectroscopy of the Transport of Phosphate Ions through a Heterogeneous Anion-Exchange Membrane at Different pH and Electrolyte Concentration

Author:

Rotta Eduardo Henrique,Martí-Calatayud Manuel CésarORCID,Pérez-Herranz ValentínORCID,Bernardes Andréa MouraORCID

Abstract

Electrodialysis is an innovative technique to reclaim phosphates from municipal wastewater. However, chemical reactions accompany the transport of these ions through ion-exchange membranes. The present study investigates the dependence of these phenomena on the initial pH and concentration of the phosphate-containing solution using a heterogeneous anion-exchange membrane. Linear sweep voltammetry, electrochemical impedance spectroscopy, and chronopotentiometry experiments were conducted for different phosphate-containing systems. For the most diluted solution, two limiting current densities (ilim) have been observed for pH 5 and 7.2, while only one ilim for pH 10, and correlated with the appearance of Gerischer arcs in EIS spectra. For pH 7.2, sub-arcs of Gerischer impedance were separated by a loop, indicating the involvement of the membrane functional groups. Increasing the phosphate concentration changed the system’s characteristics, reporting a single ilim. In the EIS spectra, the absence of Gerischer elements determined the attenuation of chemical reactions, followed by the development of a diffusion boundary layer, as indicated by the finite-length Warburg arcs. Chronopotentiometry clarified the mass transport mechanism responsible for distorting the diffusion boundary layer thickness at lower concentrations. The obtained results are expected to contribute to the phosphates recovery using electrodialysis in the most varied conditions of pH and concentration available in the environment.

Funder

the Brazilian research funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES

Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul FAPERGS

Financiadora de Estudos e Projetos -FINEP

Ibero-American Program on Science and Technology for Development

RFBR

DST (DST/IMRCD/BRICS/PC2/From waste to resources/2018

NRF

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3