Influencing Factors of Performance Degradation of Zinc–Air Batteries Exposed to Air

Author:

Zhong Yuwei,Liu Bin,Zhao Zequan,Shen Yuanhao,Liu Xiaorui,Zhong ChengORCID

Abstract

Zinc–air batteries feature high energy density, but they usually suffer from their short storage life after they start working, restricting their commercial applications. In the past, scholars did not reach an agreement on the influencing factors of the performance degradation of zinc–air batteries when exposed to air. Here, a series of comparative experiments were conducted to confirm the changes of the battery during storage after being exposed to air. The morphology and composition of the components of the battery were characterized by scanning electron microscopy (SEM) and X-ray diffraction analyses. SEM images revealed that with the increase of storage days, the corrosion of the zinc anode gradually deepens, but the surface morphology of the air cathode does not change much. The electrolyte of the batteries stored for different periods was examined through inductively coupled plasma spectroscopy and titration. After 20 days of storage, the concentration of CO32− reached 2.694 mol L−1, which indicates that more than 80% of the OH− in the electrolyte was consumed. The results show that after being exposed to air, the carbonation of the electrolyte is the main cause of the battery capacity decay.

Funder

National Natural Science Foundation for Excellent Young Scholar

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3