Abstract
For corrugated pipes with a square groove, it is known that there is no interaction between the main flow and groove flow when the aspect ratio is less than four. When the groove length and height are different, the interaction occurs in the pipe. In previous studies, it was investigated whether this interaction is dependent on groove length. However, when changing the groove height, the shape of the vortex generated inside the groove changes, which may cause the interaction to occur. Therefore, in this paper the interaction between the main and groove flow of corrugated pipes is investigated when changing both groove height as well as groove pitch, corresponding to an aspect ratio of less than four. For the groove height, the flow out of the groove after impingement changes with the shape of the secondary vortex in the groove. This flow deforms the velocity distribution in the main flow, and thus the friction factor is different. For the groove pitch, there is no difference in v-velocity distribution at the interface at the 5th and 20th groove. This means there is no interaction between the grooves, and, the friction factor differs as the number of grooves differs.
Funder
National Fire Agency
Korea National University of Transportation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献