Modeling, Control System Design and Preliminary Experimental Verification of a Hybrid Power Unit Suitable for Multirotor UAVs

Author:

Krznar MatijaORCID,Piljek Petar,Kotarski Denis,Pavković Danijel

Abstract

A key drawback of multirotor unmanned aerial vehicles (UAVs) with energy sources based solely on electrochemical batteries is related to the available on-board energy. Flight autonomy is typically limited to 15–30 min, with a flight duration upper limit of 90 min currently being achieved by high-performance battery-powered multirotor UAVs. Therefore, propulsion systems that utilize two or more different energy sources (hybrid power systems) may be considered as an alternative in order to increase the flight duration while retaining key performance benefits of battery energy storage use. The research presented in this work considers a multirotor UAV power unit, based on the internal combustion engine (ICE) powering an electricity generator (EG) connected to the common direct current (DC) bus in parallel with the lithium-polymer (LiPo) battery, and the respective modeling and identification of individual power unit subsystem, along with the dedicated control system design. Experimental verification of the proposed hybrid power unit control system has been carried out on the custom-build power unit prototype. The results show that the proposed control system combines the two power sources in a straightforward and effective way, with subsequent analysis showing that a two-fold energy density increase can be achieved with a hybrid energy source, consequently making it possible to achieve higher flight autonomy of the prospective multirotor (hover load around 1000–1400 W) equipped with such a hybrid system.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3