Assessment of the Potential for Green Hydrogen Fuelling of Very Heavy Vehicles in New Zealand

Author:

Perez Rapha JulyssesORCID,Brent Alan C.ORCID,Hinkley James

Abstract

This study examined the feasibility of green hydrogen as a transport fuel for the very heavy vehicle (VHV) fleet in New Zealand. Green hydrogen is assumed to be produced through water electrolysis using purely renewable energy (RE) as an electricity source. This study chose very heavy vehicles as a potential market for green hydrogen, because it is considered “low-hanging fruit” for hydrogen fuel in a sector where battery electrification is less feasible. The study assumed a large-scale, decentralized, embedded (dedicated) grid-connected hydrogen system of production using polymer electrolytic membrane (PEM) electrolysers. The analysis comprised three steps. First, the hydrogen demand was calculated. Second, the additional RE requirement was determined and compared with consented, but unbuilt, capacity. Finally, the hydrogen production cost was calculated using the concept of levelized cost. Sensitivity analysis and cost reduction scenarios were also undertaken. The results indicate an overall green hydrogen demand for VHVs of 71 million kg, or 8.5 PJ, per year, compared to the 14.7 PJ of diesel fuel demand for the same VHV travelled kilometres. The results also indicate that the estimated 9824 GWh of RE electricity that could be generated from consented, yet unbuilt, RE projects is greater than the electricity demand for green hydrogen production, which was calculated to be 4492 GWh. The calculated levelized hydrogen cost is NZD 6.83/kg. Electricity cost was found to be the most significant cost parameter for green hydrogen production. A combined cost reduction for CAPEX and electricity translates to a hydrogen cost reduction in 10 to 20 years.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3