Abstract
The effective utilization of micro hydropower sources is often realized through the use of pumps as turbines (PAT). The efficiency of PAT is about the same as that of the original pump. A further increase in efficiency and power output can be achieved by modifying the parts interacting with the flow, especially the impeller and the adjacent volute casing and draft tube. This paper presents a user-friendly calculation model of Francis turbine design and its application for PAT geometry modification. Two different modifications of a single-stage radial centrifugal pump were designed according to this model. The first modification (Turbine) consisted of a complete revision of the impeller geometry, volute casing and draft tube, which corresponded to a conventional Francis turbine. The second modification (Hybrid) was based on altered calculation model and consisted of a modification of only the impeller, which can be used in the original volute casing. Both modifications were tested on hydraulic test circuit at different heads. A comparison of the results of the Hybrid and the Turbine modification with the unmodified machine (Original) proved an increase in overall efficiency by 10%. Both modifications provided a higher flow rate and torque. This resulted in an overall power output increase—an increase of approximately 25% and 40% due to the Turbine and Hybrid modifications, respectively.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献