Author:
Hamizi ,Johan ,Ghazali ,Wahab ,Chowdhury ,Akbarzadeh ,Sagadevan ,Badruddin ,Khan ,Kamangar
Abstract
In this work, we report on the different sizes of manganese-doped cadmium selenide quantum dots (Mn-doped CdSe QDs) synthesized for 0 to 90 min using a reverse micelle organic solvent method and surfactant having a zinc blende structure, with physical size varying from 3 to 14 nm and crystallite size from 2.46 to 5.46 nm and with a narrow size distribution. At similar reaction times, Mn-doped CdSe QDs displayed the growth of larger QDs compared with the pure CdSe QDs. Due to the implementation of lattice strain owing to the inclusion of Mn atoms in the CdSe QD lattice, the lattice parameter was compressed as the QD size increased. Strain was induced by the particle size reduction, as observed from X-ray diffractometer (XRD) analysis. The analyses of the strain effect on the QD reduction are discussed relative to each of the XRD characteristics.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献