Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices

Author:

Lee Sung-Tae,Bae Jong-HoORCID

Abstract

Deep learning produces a remarkable performance in various applications such as image classification and speech recognition. However, state-of-the-art deep neural networks require a large number of weights and enormous computation power, which results in a bottleneck of efficiency for edge-device applications. To resolve these problems, deep spiking neural networks (DSNNs) have been proposed, given the specialized synapse and neuron hardware. In this work, the hardware neuromorphic system of DSNNs with gated Schottky diodes was investigated. Gated Schottky diodes have a near-linear conductance response, which can easily implement quantized weights in synaptic devices. Based on modeling of synaptic devices, two-layer fully connected neural networks are trained by off-chip learning. The adaptation of a neuron’s threshold is proposed to reduce the accuracy degradation caused by the conversion from analog neural networks (ANNs) to event-driven DSNNs. Using left-justified rate coding as an input encoding method enables low-latency classification. The effect of device variation and noisy images to the classification accuracy is investigated. The time-to-first-spike (TTFS) scheme can significantly reduce power consumption by reducing the number of firing spikes compared to a max-firing scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference36 articles.

1. Deep learning

2. Going deeper with convolutions;Szegedy;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015

3. Deep learning based pre-screening method for depression with imagery frontal eeg channels;Kwon;Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC),2019

4. A Deep Learning Model for Cell Growth Inhibition IC50 Prediction and Its Application for Gastric Cancer Patients

5. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3