Author:
Pan Xu,Wang Ying,Shen Mingguang
Abstract
A recently developed conservative level set model, coupled with the Navier-Stokes equations, was invoked to simulate non-spherical droplet impact in three dimensions. The advection term in the conservative level set model was tackled using the traditional central difference scheme on a half-staggered grid. The pressure velocity coupling was decoupled using the projection method. The inhouse code was written in Fortran and was run with the aid of the shared memory parallelism, OpenMP. Before conducting extensive simulations, the model was tested on meshes of varied resolutions and validated against experimental works, with satisfyingly qualitative and quantitative agreement obtained. The model was then employed to predict the impact and splashing dynamics of non-spherical droplets, with the focus on the effect of the aspect ratio. An empirical correlation of the maximum spread factor was proposed. Besides, the number of satellite droplets when splashing occurs was in reasonable agreement with a theoretical model.
Funder
Key Technologies Research and Development Program
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献