Replenishment of the Gas in a Hydrophobically-Structured Surface by Mass Transfer at the Liquid-Gas Interface for Improving the Stability of Entrapped Gas

Author:

Wang Bao,Wang Caihua,Weng Ding,Lazarus Marisa,Yan DayunORCID,Liu Xiaoyan

Abstract

The underwater nonwetted state on a superhydrophobic surface is hardly maintained in flowing water because the entrapped gas dissolves into the water or is carried off by flow. Therefore, a source gas is necessary to maintain a superhydrophobic state for its applications under realistic conditions. As detailed in this paper, based on the gas entrapped on a hydrophobic structured surface, the gas regeneration was experimentally achieved to replenish the losses of gas carried off by the flowing and reduced through dissolution. Furthermore, the mechanism of mass transfer at the liquid-gas interface was investigated by simulation. The results indicated that water molecules at a liquid-gas interface should escape to entrapped gas when water content didn’t reach saturation. This phenomenon could be due to the evaporation at the liquid-gas interface. With the increasing water content in the entrapped gas, the evaporation rate at the liquid-gas interface descended gradually. Under the action of flowing, the substances containing high concentrations of water molecule was washed away at the liquid-gas interface. Therefore, the low concentration of the water molecule at the liquid-gas interface was created. As a result, the equilibrium of water and gas at the liquid-gad interface was broken, and the evaporation continued to replenish the lost gas. Overall, the presented results in this study could be considered a promising candidate for replenishing the lost gas in hydrophobic structured surfaces by mass transfer at the liquid-gas interface.

Funder

National Natural Science Foundation of China

Northeast Petroleum University Youth Science Foundation of China

Tribology Science Fund of State Key Laboratory of Tribology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3