Enhanced Performance of Perovskite Light-Emitting Diodes via Phenylmethylamine Passivation

Author:

Yu Shisong,Zhang Kai,Cai Xiangcheng,Tu Peng,Zhou Yuanming,Mei Fei

Abstract

Organic-inorganic perovskite materials are widely used in the preparation of light-emitting diodes due to their low raw material cost, solution preparation, high color purity, high fluorescence quantum yield, continuously tunable spectrum, and excellent charge transport properties. It has become a research hotspot in the field of optoelectronics today. At present, the nonradiative recombination and fluorescence quenching occurring at the interface between the device transport layer and the light-emitting layer are still important factors limiting the performance of perovskite light-emitting diodes (PeLEDs). In this work, based on CH3NH3PbBr3 perovskite, the effects of parameters such as precursor solution, anti-solvent chlorobenzene (CB), and small amine molecule phenylmethylamine (PMA) on the performance of perovskite films and devices were investigated. The research results show that adding an appropriate amount of PMA can reduce the grain size of perovskite, improve the coverage of the film, enhance the crystallinity of the film, and increase the fluorescence intensity of the perovskite film. When the PMA content is 0.050 vol.%, the maximum luminance of PeLEDs is 2098 cd/m2 and the maximum current efficiency is 1.592 cd/A, which is greatly improved by 30% and 64.8% compared with the reference device without PMA doping. These results suggest that an appropriate amount of PMA can effectively passivate the defects in perovskite films, and inhibit the non-radiative recombination caused by the traps, thereby improving the optoelectronic performance of the device.

Funder

the program of leading the green industrial technology of Hubei University of Technology

the Open Foundation of Hubei Key Laboratory for High-efficiency Use of Solar Energy and Operation Control of Energy Storage System

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3