Development of a Simple Fabrication Method for Magnetic Micro Stir Bars and Induction of Rotational Motion in Chlamydomonas reinhardtii

Author:

Shimizu Ichiro,Yamashita Kyohei,Tokunaga Eiji

Abstract

A magnetic micro stirrer bar (MMSB) is used in the mixing operation of microfluidic devices. We have established a low-cost and easy method to make MMSBs using magnetic (neodymium magnets, magnet sheets) or non-magnetic powders (SUS304) as materials. We demonstrated three kinds of MMSB have respective advantages. To confirm the practical use of this MMSB, a cell suspension of the motile unicellular green alga Chlamydomonas reinhardtii was stirred in microwells. As a result, the number of rotating cells increased with only one of the two flagella mechanically removed by the shear force of the rotating bar, which facilitates the kinetic analysis of the flagellar motion of the cell. The rotational motion of the monoflagellate cell was modeled as translational (orbital) + spinning motion of a sphere in a viscous fluid and the driving force per flagellum was confirmed to be consistent with previous literature. Since the present method does not use genetic manipulations or chemicals to remove a flagellum, it is possible to obtain cells in a more naturally viable state quickly and easily than before. However, since the components eluted from the powder material harm the health of cells, it was suggested that MMSB coated with resin for long-term use would be suitable for more diverse applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3