Improving Stockline Detection of Radar Sensor Array Systems in Blast Furnaces Using a Novel Encoder–Decoder Architecture

Author:

Liu Xiaopeng,Liu Yan,Zhang Meng,Chen Xianzhong,Li Jiangyun

Abstract

The stockline, which describes the measured depth of the blast furnace (BF) burden surface with time, is significant to the operator executing an optimized charging operation. For the harsh BF environment, noise interferences and aberrant measurements are the main challenges of stockline detection. In this paper, a novel encoder–decoder architecture that consists of a convolution neural network (CNN) and a long short-term memory (LSTM) network is proposed, which suppresses the noise interferences, classifies the distorted signals, and regresses the stockline in a learning way. By leveraging the LSTM, we are able to model the longer historical measurements for robust stockline tracking. Compared to traditional hand-crafted denoising processing, the time and efforts could be greatly saved. Experiments are conducted on an actual eight-radar array system in a blast furnace, and the effectiveness of the proposed method is demonstrated on the real recorded data.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Fundamental Research Funds for the China Central Universities of USTB

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3