Removal of Trace Thallium from Industrial Wastewater by Fe0-Electrocoagulation

Author:

Fu XianghuiORCID,Li Li,Yang Guochao,Xu Xiangyang,He Lihua,Zhao Zhongwei

Abstract

As thallium (Tl) is a highly toxic heavy metal, there are compulsory environmental regulations in many countries on minimizing its release. This research investigated the treatment of real industrial wastewater with low Tl(I) concentration by Fe0-electrocoagulation (Fe0-EC) in a batch aeration-forced pump cycle reactor. The effects of pH (7–12), current density (8.3–33.3 mA/cm2), dissolved oxygen (DO) in wastewater, and initial Tl(I) concentration (66–165 µg/L) on Tl(I) removal efficiency were investigated. The removal efficiency of Tl(I) is pH-dependent, to be exact, it increases significantly with pH rising from 8 to 11. Initial pH of influent and DO concentration were the key operation parameters which strongly affect Tl(I) removal. After the water sample with initial Tl(I) concentration of 115 µg/L was treated for 12 min by a single-step process at pH of 11 and current density of 16.7 mA/cm2, the residual Tl(I) concentration was decreased to beneath the emission limit in China (2 µg/L) with a low energy consumption of 0.82 kWh/m3. By prolonging the operation time, the concentration was further reduced to 0.5 µg/L or even lower. The main composition of the flocculent sludges is iron oxyhydroxide, yet its crystal structure varies dependent on pH value which may result in different Tl(I) removal efficiency. Feroxyhyte nanosheets generate in situ by Fe0-EC, which contributes to the rapid and effective removal of Tl(I), while the speedy oxidation under DO-enriched conditions benefits the feroxyhyte formation. The mechanism of Tl(I) removal by Fe0-EC is attributed to the combination of electrostatic attraction and the formation of inner-sphere complexes. As shown in the technical and mechanical studies, Fe0-EC technology is an effective method for low Tl concentration removal from wastewater.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference73 articles.

1. Thallium toxicity

2. Thallium: a review of public health and environmental concerns

3. Thallium pollution in China: A geo-environmental perspective

4. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy;Off. J. Eur. Communities,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3