A Methodological Review on Development of Crack Healing Technologies of Asphalt Pavement

Author:

Zhang Lei1ORCID,Hoff Inge1ORCID,Zhang Xuemei1ORCID,Liu Jianan12ORCID,Yang Chao3ORCID,Wang Fusong4ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, 7491 Trondheim, Trøndelag, Norway

2. School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China

3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China

4. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Crack healing has been a key area of asphalt pavement research. In this review, different crack-healing theories and crack-healing evaluation methods in bitumen and asphalt mixtures are summarized and presented. Then different crack healing technologies have highlighted the problems and solutions associated with their implementation. Detailly, traditional technologies (hot pouring and fog seal) are introduced. They mainly fill cracks from the outside, which can effectively prevent further damage to the asphalt pavement, when the cracks have generally developed to the middle and late stages of practical engineering. Their extension of the life of the asphalt pavement is relatively limited. Energy supply technologies (induction and microwave heating) have demonstrated significant efficacy in enhancing the crack healing capability of asphalt pavement, particularly in microcracks. Now, Extensive laboratory testing and some field test sections have been conducted and they are waiting for the promotion from the industry. The agents encapsulated technologies (Saturated porous aggregates encapsulate rejuvenators, Core-shell polymeric microcapsules, Ca-alginate capsule, Hollow fibers and Compartment fibers) not only heal cracks but rejuvenate the aged asphalt pavement. In order to promote industrial application, more field test sections and large industrial mixing and compaction equipment applications need to be implemented. Finally, some other potential crack healing techniques (coupling application, electrical conductivity, 3D printing, and modifications) are also mentioned.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference133 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3