Assessment of Maximum Penetration Capacity of Photovoltaic Generator Considering Frequency Stability in Practical Stand-Alone Microgrid

Author:

Joung ,Lee ,Park

Abstract

In South Korea, the existing diesel generators are being replaced with renewable energy sources (RESs) in several stand-alone microgrids. However, their reliability and stability are not still guaranteed by fluctuations of the system caused by RESs, arising from unpredictable changes in environmental factors. Moreover, since the inertia that is originally provided by the diesel synchronous generators is reduced, the overall system becomes highly sensitive to frequency variations. As a result, the installation of RESs must be well planned while considering the upper limit of their installed capacity. In this paper, a new method for evaluating the maximum penetration capacity of photovoltaic (PV) generators to ensure the stable operation of a microgrid is proposed. For the analytical approach, two frequency stability indexes, which are the minimum instantaneous frequency and the quasi-steady-state (QSS) frequency after a disturbance, are used. The capacity of PV to be installed is limited by considering the characteristics of other generators. In addition, the efficiency of the energy storage system (ESS) is also analyzed to determine the optimal capacity of both PV and ESS. The effectiveness of the proposed method is firstly proven through the mathematical analysis. Then, case studies on a practical stand-alone microgrid in South Korea are carried out using a time-domain simulation based on the DIgSILENT PowerFactory® software.

Funder

Korea Electric Power Corporation

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3