An Optimized Coordination Strategy between Line Main Protection and Hybrid DC Breakers for VSC-Based DC Grids Using Overhead Transmission Lines

Author:

Zheng ,Jia ,Gong ,Zhang ,Pei

Abstract

Compared with alternating current (AC) power grids, the voltage-sourced converter (VSC)-based direct current (DC) grid is a system characterized by “low damping”, as a result, once there is a short-circuit fault on the DC transmission line, the fault current will rise more sharply and the influence range will be much wider within the same time scale. Moreover the phenomenon that a local fault causes a whole power grid outage is more likely to occur. Overhead transmission lines (OHLs) have been regarded as the mainstream form of power transmission in future high-voltage, large-capacity and long-distance VSC-based DC grids. However, the application of overhead transmission lines will inevitably lead to a great increase in the probability of DC line failure. Therefore, research on how to isolate the DC fault line quickly is of great significance. Based on the technology route for fault line isolation using DC breakers, on the basis of in-depth analysis of traditional coordination strategy, an optimized coordination strategy between line main protection and a hybrid DC breaker for VSC-based DC grids using overhead transmission lines is proposed in this paper, which takes the start-up output signal of line main protection as the pre-operation instruction of the corresponding hybrid DC breaker. As a result, the risks of blockage of the modular multilevel converter (MMC) closer to the fault position and of damage to power electronic devices in main equipment can be reduced effectively. Finally, the proposed coordination strategy was verified and analyzed through simulation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3