Effects of Illumination Conditions on Individual Tree Height Extraction Using UAV LiDAR: Pilot Study of a Planted Coniferous Stand

Author:

Li Tianxi12,Lin Jiayuan12,Wu Wenjian12,Jiang Rui12

Affiliation:

1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. Chongqing Engineering Research Center for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, Chongqing 400715, China

Abstract

Tree height is one of the key dendrometric parameters for indirectly estimating the timber volume or aboveground biomass of a forest. Field measurement is time-consuming and labor-intensive, while unmanned aerial vehicle (UAV)-borne LiDAR is a more efficient tool for acquiring tree heights of large-area forests. Although individual tree heights extracted from point cloud data are of high accuracy, they are still affected by some weather and environment factors. In this study, taking a planted M. glyptostroboides (Metasequoia glyptostroboides Hu & W.C. Cheng) stand as the study object, we preliminarily assessed the effects of various illumination conditions (solar altitude angle and cloud cover) on tree height extraction using UAV LiDAR. The eight point clouds of the target stand were scanned at four time points (sunrise, noon, sunset, and night) in two consecutive days (sunny and overcast), respectively. The point clouds were first classified into ground points and aboveground vegetation points, which accordingly produced digital elevation model (DEM) and digital surface model (DSM). Then, the canopy height model (CHM) was obtained by subtracting DEM from DSM. Subsequently, individual trees were segmented based on the seed points identified by local maxima filtering. Finally, the individual tree heights of sample trees were separately extracted and assessed against the in situ measured values. As results, the R2 and RMSEs of tree heights obtained in the overcast daytime were commonly better than those in the sunny daytime; the R2 and RMSEs at night were superior among all time points, while those at noon were poorest. These indicated that the accuracy of individual tree height extraction had an inverse correlation with the intensity of illumination. To obtain more accurate tree heights for forestry applications, it is best to acquire point cloud data using UAV LiDAR at night, or at least not at noon when the illumination is generally strongest.

Funder

the National Natural Science Foundation of China

the Key Research and Development Program of the Sichuan Province

the Postgraduate Innovative Research Project of Chongqing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3