A Deep Learning Method for Log Diameter Measurement Using Wood Images Based on Yolov3 and DeepLabv3+

Author:

Lu Zhenglan1,Yao Huilu12,Lyu Yubiao3,He Sheng1,Ning Heng1,Yu Yuhui2,Zhai Lixia1,Zhou Lin1

Affiliation:

1. School of Physical Science & Technology, Guangxi University, Nanning 530004, China

2. School of Electrical Engineering, Guangxi University, Nanning 530004, China

3. Guangxi Academy of Sciences, Nanning 530007, China

Abstract

Wood volume is an important indicator in timber trading, and log diameter is one of the primary parameters used to calculate wood volume. Currently, the most common methods for measuring log diameters are manual measurement or visual estimation by log scalers, which are laborious, time consuming, costly, and error prone owing to the irregular placement of logs and large numbers of roots. Additionally, this approach can easily lead to misrepresentation of data for profit. This study proposes a model for automatic log diameter measurement that is based on deep learning and uses images to address the existing problems. The specific measures to improve the performance and accuracy of log-diameter detection are as follows: (1) A dual network model is constructed combining the Yolov3 algorithm and DeepLabv3+ architecture to adapt to different log-end color states that considers the complexity of log-end faces. (2) AprilTag vision library is added to estimate the camera position during image acquisition to achieve real-time adjustment of the shooting angle and reduce the effect of log-image deformation on the results. (3) The backbone network is replaced with a MobileNetv2 convolutional neural network to migrate the model to mobile devices, which reduces the number of network parameters while maintaining detection accuracy. The training results show that the mean average precision of log-diameter detection reaches 97.28% and the mean intersection over union (mIoU) of log segmentation reaches 92.22%. Comparisons with other measurement models demonstrate that the proposed model is accurate and stable in measuring log diameter under different environments and lighting conditions, with an average accuracy of 96.26%. In the forestry test, the measurement errors for the volume of an entire truckload of logs and a single log diameter are 1.20% and 0.73%, respectively, which are less than the corresponding error requirements specified in the industry standards. These results indicate that the proposed method can provide a viable and cost-effective solution for measuring log diameters and offering the potential to improve the efficiency of log measurement and promote fair trade practices in the lumber industry.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3