Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting

Author:

Huang Lei,Mao Feng,Zhang Kai,Li Zhiheng

Abstract

Multivariate time series forecasting has long been a research hotspot because of its wide range of application scenarios. However, the dynamics and multiple patterns of spatiotemporal dependencies make this problem challenging. Most existing methods suffer from two major shortcomings: (1) They ignore the local context semantics when modeling temporal dependencies. (2) They lack the ability to capture the spatial dependencies of multiple patterns. To tackle such issues, we propose a novel Transformer-based model for multivariate time series forecasting, called the spatial–temporal convolutional Transformer network (STCTN). STCTN mainly consists of two novel attention mechanisms to respectively model temporal and spatial dependencies. Local-range convolutional attention mechanism is proposed in STCTN to simultaneously focus on both global and local context temporal dependencies at the sequence level, which addresses the first shortcoming. Group-range convolutional attention mechanism is designed to model multiple spatial dependency patterns at graph level, as well as reduce the computation and memory complexity, which addresses the second shortcoming. Continuous positional encoding is proposed to link the historical observations and predicted future values in positional encoding, which also improves the forecasting performance. Extensive experiments on six real-world datasets show that the proposed STCTN outperforms the start-of-the-art methods and is more robust to nonsmooth time series data.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3