A Survey on Detection, Tracking and Identification in Radio Frequency-Based Device-Free Localization

Author:

Denis StijnORCID,Berkvens RafaelORCID,Weyn MaartenORCID

Abstract

The requirement of active localization techniques to attach a hardware device to the targets that need to be located can be difficult or even impossible for certain applications. For this reason, there has been an increasing interest in tagless or device-free localization (DFL) approaches. In particular, the research domain of RF-based device-free localization has been steadily evolving since its inception slightly over a decade ago. Many novel techniques have been developed regarding the three core aspects of DFL: detection, tracking, and identification. The increasing use of channel state information (CSI) has contributed considerably to these developments. In particular, the progress it enabled regarding the exceptionally difficult `identification problem’ has been highly impressive. In this survey, we provide a comprehensive overview of this evolutionary process, describe essential DFL concepts and highlight several key techniques whose creation marked important milestones within this field of research. We do so in a structured manner in which each technique is categorized according to the DFL core aspect it emphasizes most. Additionally, we discuss current blocking issues within the state-of-the-art and suggest multiple high-level research directions which will aid in the search towards eventual solutions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tagnoo: Enabling Smart Room-Scale Environments with RFID-Augmented Plywood;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

2. Platform Design of Passive Target Perception and Localization Based on Sensor Networks;Journal of Sensors;2024-04-02

3. Scenario modeling-aided AP placement optimization method for indoor localization and network access;China Communications;2024-03

4. Validation of an IoT System Using UHF RFID Technology for Goose Growth Monitoring;Agriculture;2023-12-30

5. Determination of Radiation Efficiencies for a Prototype with Impedance Bandwidth of 400 MHz in Free Space and 480 MHz on a Metallic Surface;2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3