Optimized Dissolved Oxygen Fuzzy Control for Recombinant Escherichia coli Cultivations

Author:

Akisue Rafael Akira,Harth Matheus LopesORCID,Horta Antonio Carlos LuperniORCID,de Sousa Junior RuyORCID

Abstract

Due to low oxygen solubility and mechanical stirring limitations of a bioreactor, ensuring an adequate oxygen supply during a recombinant Escherichia coli cultivation is a major challenge in process control. Under the light of this fact, a fuzzy dissolved oxygen controller was developed, taking into account a decision tree algorithm presented in the literature, and implemented in the supervision software SUPERSYS_HCDC. The algorithm was coded in MATLAB with its membership function parameters determined using an Adaptive Network-Based Fuzzy Inference System tool. The controller was composed of three independent fuzzy inference systems: Princ1 and Princ2 assessed whether there would be an increment or a reduction in air and oxygen flow rates (respectively), whilst Delta estimated the size of these variations. To test the controller, simulations with a neural network model and E. coli cultivations were conducted. The fuzzification of the decision tree was successful, resulting in smoothing of air and oxygen flow rates and, hence, in an attenuation of dissolved oxygen oscillations. Statistically, the average standard deviation of the fuzzy controller was 2.45 times lower than the decision tree (9.48%). Results point toward an increase in the flow meter lifespan and a possible reduction of the metabolic stress suffered by E. coli during the cultivation.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3