Abstract
As the use of electronic displays increases rapidly, visual fatigue problems are also increasing. The subjective evaluation methods used for visual fatigue measurement have individual difference problems, while objective methods based on bio-signal measurement have problems regarding motion artifacts. Conventional eye image analysis-based visual fatigue measurement methods do not accurately characterize the complex changes in the appearance of the eye. To solve this problem, in this paper, an objective visual fatigue measurement method based on infrared eye image analysis is proposed. For accurate pupil detection, a convolutional neural network-based semantic segmentation method was used. Three features are calculated based on the pupil detection results: (1) pupil accommodation speed, (2) blink frequency, and (3) eye-closed duration. In order to verify the calculated features, differences in fatigue caused by changes in content color components such as gamma, color temperature, and brightness were compared with a reference video. The pupil detection accuracy was confirmed to be 96.63% based on the mean intersection over union. In addition, it was confirmed that all three features showed significant differences from the reference group; thus, it was verified that the proposed analysis method can be used for the objective measurement of visual fatigue.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献