Abstract
Short-range ultra-wideband (UWB) radar sensors belong to very promising sensing techniques that have received vast attention recently. The M-sequence UWB sensing techniques for radio detection and ranging feature several advantages over the other short-range radars, inter alia superior integration capabilities. The prerequisite to investigate their capabilities in real scenarios is the existence of physically available hardware, i.e., particular functional system blocks. In this paper, we present three novel blocks of M-sequence UWB radars exploiting application-specific integrated circuit (ASIC) technology. These are the integrated 15th-order M-sequence radar transceiver on one chip, experimental active Electronic Communication Committee (ECC) bandpass filter, and miniature transmitting UWB antenna with an integrated amplifier. All these are custom designs intended for the enhancement of capabilities of an M-sequence-based system family for new UWB short-range sensing applications. The design approaches and verification of the manufactured prototypes by measurements of the realized circuits are presented in this paper. The fine balance on technology capabilities (Fc of roughly 120 GHz) and thoughtful design process of the proposed blocks is the first step toward remarkably minimized devices, e.g., as System on Chip designs, which apparently allow broadening the range of new applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献