An Automatic Classification System for Environmental Sound in Smart Cities

Author:

Zhang Dongping1,Zhong Ziyin1,Xia Yuejian1,Wang Zhutao1,Xiong Wenbo2

Affiliation:

1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, China Jiliang University, Hangzhou 310018, China

2. Hangzhou Aihua Intelligent Technology Co., Ltd., 359 Shuxin Road, Hangzhou 311100, China

Abstract

With the continuous promotion of “smart cities” worldwide, the approach to be used in combining smart cities with modern advanced technologies (Internet of Things, cloud computing, artificial intelligence) has become a hot topic. However, due to the non-stationary nature of environmental sound and the interference of urban noise, it is challenging to fully extract features from the model with a single input and achieve ideal classification results, even with deep learning methods. To improve the recognition accuracy of ESC (environmental sound classification), we propose a dual-branch residual network (dual-resnet) based on feature fusion. Furthermore, in terms of data pre-processing, a loop-padding method is proposed to patch shorter data, enabling it to obtain more useful information. At the same time, in order to prevent the occurrence of overfitting, we use the time-frequency data enhancement method to expand the dataset. After uniform pre-processing of all the original audio, the dual-branch residual network automatically extracts the frequency domain features of the log-Mel spectrogram and log-spectrogram. Then, the two different audio features are fused to make the representation of the audio features more comprehensive. The experimental results show that compared with other models, the classification accuracy of the UrbanSound8k dataset has been improved to different degrees.

Funder

Key Research and Development Projects in Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3