Fault Localization by Comparing Memory Updates between Unit and Integration Testing of Automotive Software in an Hardware-in-the-Loop Environment

Author:

Choi Ki-Yong,Lee Jung-WonORCID

Abstract

During the inspection stage, an integration test is performed on electronic automobile parts that have passed a unit test. The faults found during this test are reported to the developer, who subsequently modifies the source code. If the tester provides the developer with memory usage information (such as functional symbol or interface signal), which works differently from normal operation in failed Hardware-in-the-Loop (HiL) testing (even when the tester has no source code), that information will be useful for debugging. In this paper, we propose a fault localization method for automotive software in an HiL environment by comparing the analysis results of updated memory between units and integration tests. Analyzing the memory usage of a normally operates unit test, makes it possible to obtain memory-updated information necessary for the operation of that particular function. By comparing this information to the memory usage when a fault occurs during an integration test, erroneously operated symbols and stored values are presented as potential root causes of the fault. We applied the proposed method to HiL testing for an OSEK/VDX-based electronic control unit (ECU). As a result of testing using fault injection, we confirmed that the fault causes can be found by checking the localized memory symbols with an average of 5.77%. In addition, when applying this methodology to a failure that occurred during a body control module (BCM) (which provides seat belt warnings) test, we could identify a suspicious symbol and find the cause of the test failure with only 8.54% of localized memory symbols.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Model-based hazard analysis method on automotive programmable electronic system

2. How to Do Hardware-in-the-Loop Simulation Right. SAE Technical Paper, No. 2005-01-1657https://www.sae.org/publications/technical-papers/content/2005-01-1657/

3. An Experiment of Traceability-Driven System Testing

4. HiL testing based fault localization method using memory update frequency;Choi,2015

5. Functional Debug Techniques for Embedded Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3