Author:
Zeng Zhiqiang,Zhang Jian,Wang Xiaodong,Chen Yuming,Zhu Chaoyang
Abstract
Place recognition is one of the most fundamental topics in the computer-vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of knowledge accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place-recognition literature. Since condition-invariant and viewpoint-invariant features are essential factors to long-term robust visual place-recognition systems, we start with traditional image-description methodology developed in the past, which exploits techniques from the image-retrieval field. Recently, the rapid advances of related fields, such as object detection and image classification, have inspired a new technique to improve visual place-recognition systems, that is, convolutional neural networks (CNNs). Thus, we then introduce the recent progress of visual place-recognition systems based on CNNs to automatically learn better image representations for places. Finally, we close with discussions and mention of future work on place recognition.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Natural Science Foundation of Zhejiang Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献