Abstract
Indoor wireless local area network (WLAN) based positioning technologies have boomed recently because of the huge demands of indoor location-based services (ILBS) and the wide deployment of commercial Wi-Fi devices. Channel state information (CSI) extracted from Wi-Fi signals could be calibrated and utilized as a fine-grained positioning feature for indoor fingerprinting localization. One of the main factors that would restrict the positioning accuracy of fingerprinting systems is the spatial resolution of fingerprints (SRF). This paper mainly focuses on the improvement of SRF for indoor CSI-based positioning and a calibrated CSI feature (CCF) with high SRF is established based on the preprocess of both measured amplitude and phase. In addition, a similarity calculation metric for the proposed CCF is designed based on modified dynamic time warping (MDTW). An indoor fingerprinting method based on CCF and MDTW, named CC-DTW, is then proposed to improve the positioning accuracy in indoors. Experiments are conducted in two indoor office testbeds, and the performances of the proposed CC-DTW, one time-reversal (TR) based approach and one Euclidean distance (ED) based approach are evaluated and discussed. The results show that the SRF of CC-DTW outperforms the TR-based one and the ED-based one in both two testbeds in terms of the receiver operating characteristic (ROC) curve metric, and the area under curve (AUC) metric.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference36 articles.
1. PILA: Sub-Meter Localization Using CSI from Commodity Wi-Fi Devices
2. Survey of WiFi positioning using time-based techniques
3. “Indoor Location in Retail: Where Is the Money?” ABI Research: Location Technologies Market Research
http://www.abiresearch.com/market-research/service/location-technologies/
4. Local Positioning System Using Flickering Infrared LEDs
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献