Extracellular Enzyme Stoichiometry Reveals Soil Microbial Carbon and Phosphorus Limitations in the Yimeng Mountain Area, China

Author:

Wang Lu,Li Kun,Guo Jianyao,Liu Xiumei,Gao Jinhui,Ma Liang,Wei Jinhui,Lu Min,Li Chuanrong

Abstract

Soil extracellular enzymes are considered key components in ecosystem carbon and nutrient cycling, and analysing their stoichiometry is an effective way to reveal the resource limitations on soil microbial metabolism. In this study, the soil and litter of Quercus acutissima plots, Pinus thunbergii plots, Quercus acutissima–Pinus thunbergii mixed-plantation plots, herb plots, and shrub plots in the state-owned Dawa Forest Farm in the Yimeng Mountain area were studied. The total carbon (C), nitrogen (N), and phosphorus (P) contents of litter and the physical and chemical properties of soil were analyzed, along with the activities of four extracellular enzymes related to the soil C, N, and P cycle: β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP), and acid phosphatase (AP). The extracellular enzyme stoichiometric model was used to study and compare the metabolic limitations of soil microorganisms in different plots, and the driving factors of microbial metabolic limitations were explored by redundancy and linear regression analyses. The results showed that the values of BG/(NAG + LAP) were all higher than 1, the values of (NAG + LAP)/AP all lower than 1, and the vector angles of the five plots all greater than 45°, which indicated that the soil microorganisms were relatively limited by C and P. Redundancy and linear regression analysis revealed that soil physical properties (e.g., soil moisture) and litter total C make greater contributions to soil extracellular enzymes and stoichiometry than the other investigated soil parameters, whereas soil chemical properties (e.g., soil organic C and available P) predominantly controlled vector properties. Therefore, microbial metabolism limitations are greatly regulated by soil physical and chemical properties and litter total C and N. Compared with the forest plots, the soil microbial C (1.67) and P (61.07°) limitations of herb plots were relatively higher, which means that the soil microbial communities of forest plots are more stable than those of herb plots in the Yimeng Mountain area. Forest plots were more conducive than other plots to the improvement of soil microbial ecology in this area. This study could be important for illuminating soil microbial metabolism and revealing soil nutrient cycling in the Yimeng Mountain area ecosystem of China.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3