Time Series Prediction of Reservoir Bank Slope Deformation Based on Informer and InSAR: A Case Study of Dawanzi Landslide in the Baihetan Reservoir Area, China

Author:

Li Qiyu12,Yao Chuangchuang12,Yao Xin12,Zhou Zhenkai12,Ren Kaiyu12

Affiliation:

1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

2. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China

Abstract

Reservoir impoundment significantly impacts the hydrogeological conditions of reservoir bank slopes, and bank slope deformation or destruction occurs frequently under cyclic impoundment conditions. Ground deformation prediction is crucial to the early warning system for slow-moving landslides. Deep learning methods have developed rapidly in recent years, but only a few studies are on combining deep learning and landslide warning. This paper proposes a slow-moving landslide displacement prediction method based on the Informer deep learning model. Firstly, the Sentinel-1 (S1) data are processed to obtain the cumulative displacement time-series image of the bank slope by the Small-BAseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) method. Then, combining data on rainfall, humidity, and horizontal and vertical distances of pixel points from the water table line, this study created a dataset with landslide displacement as the target feature. After that, this paper improves the Informer model to make it applicable to our dataset. This study chose the Dawanzi landslide in the Baihetan reservoir area, China, for validation. After training with 50-time series deformation data points, the model can predict the displacement results of 12-time series deformation data points using 12-time series multi-feature data, and compared with the monitoring values, its Mean Square Error (MSE) was 11.614. The results show that the multivariate dataset is better than the deformation univariate data in predicting the displacement in the large deformation zone of bank slopes, and our model has better complexity and prediction performance than other deep learning models. The prediction results show that among zones I–IV, where the Dawanzi Tunnel is located, significant deformation with the maximum deformation rate detected exceeding –100mm/year occurs in Zones I and III. In these two zones, the initiation of deformation relates to the drop in water level after water storage, with the deformation rate of Zone III exhibiting a stronger correlation with the change in water level. It is expected that deformation in Zone III will either remain slow or stop, while deformation in Zone I will continue at the same or a decreased rate. Our proposed method for slow-moving landslide displacement forecasting offers fast, intuitive, and economically feasible advantages. It can provide a feasible research idea for future deep learning and landslide warning research.

Funder

China Three Gorges Corporation

China Geology Survey Project

Project of Ministry and Province Cooperation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3