Abstract
In this study, a comparative analysis of the statistical index (SI), index of entropy (IOE) and weights of evidence (WOE) models was introduced to landslide susceptibility mapping, and the performance of the three models was validated and systematically compared. As one of the most landslide-prone areas in Shaanxi Province, China, Shangnan County was selected as the study area. Firstly, a series of reports, remote sensing images and geological maps were collected, and field surveys were carried out to prepare a landslide inventory map. A total of 348 landslides were identified in study area, and they were reclassified as a training dataset (70% = 244 landslides) and testing dataset (30% = 104 landslides) by random selection. Thirteen conditioning factors were then employed. Corresponding thematic data layers and landslide susceptibility maps were generated based on ArcGIS software. Finally, the area under the curve (AUC) values were calculated for the training dataset and the testing dataset in order to validate and compare the performance of the three models. For the training dataset, the AUC plots showed that the WOE model had the highest accuracy rate of 76.05%, followed by the SI model (74.67%) and the IOE model (71.12%). In the case of the testing dataset, the prediction accuracy rates for the SI, IOE and WOE models were 73.75%, 63.89%, and 75.10%, respectively. It can be concluded that the WOE model had the best prediction capacity for landslide susceptibility mapping in Shangnan County. The landslide susceptibility map produced by the WOE model had a profound geological and engineering significance in terms of landslide hazard prevention and control in the study area and other similar areas.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献