Abstract
The statistics of grain displacements probability distribution function (pdf) during the shear of a granular medium displays an unusual dependence with the shear increment upscaling as recently evinced (see “experimental validation of a nonextensive scaling law in confined granular media”). Basically, the pdf of grain displacements has clear nonextensive (q-Gaussian) features at small scales, but approaches to Gaussian characteristics at large shear window scales—the granulence effect. Here, we extend this analysis studying a larger system (more grains considered in the experimental setup), which exhibits a severe shear band fault during the macroscopic straining. We calculate the pdf of grain displacements and the dependency of the q-statistics with the shear increment. This analysis has shown a singular behavior of q at large scales, displaying a non-monotonic dependence with the shear increment. By means of an independent image analysis, we demonstrate that this singular non-monotonicity could be associated with the emergence of a shear band within the confined system. We show that the exact point where the q-value inverts its tendency coincides with the emergence of a giant percolation cluster along the system, caused by the shear band. We believe that this original approach using Statistical Mechanics tools to identify shear bands can be a very useful piece to solve the complex puzzle of the rheology of dense granular systems.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献