Nitrogen Removal from Agricultural Subsurface Drainage by Surface-Flow Wetlands: Variability

Author:

Mendes Lipe Renato DantasORCID

Abstract

Agriculture has long been considered a great source of nitrogen (N) to surface waters and a major cause of eutrophication. Thus, management practices at the farm-scale have since attempted to mitigate the N losses, although often limited in tile-drained agricultural catchments, which speed up the N transport, while minimizing natural removal in the landscape. In this context, surface-flow constructed wetlands (SFWs) have been particularly implemented as an edge-of-field strategy to intercept tile drains and reduce the N loads by re-establishing ecosystems services of previously drained water ponded areas. These systems collect the incoming water volumes in basins sufficiently large to prolong the hydraulic residence time to a degree where biogeochemical processes between the water, soil, sediments, plants, macro and microorganisms can mediate the removal of N. Despite their documented suitability, great intra and inter-variability in N treatment is still observed to date. Therefore, it is essential to thoroughly investigate the driving factors behind performance of SFWs, in order to support their successful implementation according to local catchment characteristics, and ensure compliance with N removal goals. This review contextualizes the aforementioned issue, and critically evaluates the influence of hydrochemistry, hydrology and biogeochemistry in the treatment of N by SFWs.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference71 articles.

1. Nitrate Nitrogen in Surface Waters as Influenced by Climatic Conditions and Agricultural Practices

2. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures

3. Agricultural non-point source pollution in the Yongding River Basin

4. Reducing Nutrient Loads, Especially Nitrate-Nitrogen, to Surface Water, Ground Water, and the Gulf of Mexico: Topic 5 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico;Mitsch,1999

5. Limitations of improved nitrogen management to reduce nitrate leaching and increase use efficiency;Baker,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3