Feasibility of Achieving Efficient Nitrite Accumulation in Moving Bed Biofilm Reactor: The Influencing Factors, Microbial Structures, and Biofilm Characteristics

Author:

Li Hongyi1,Xue Zhaoxia23,Yin Tongxin23,Liu Tingfeng1,Hu Zhixin1

Affiliation:

1. School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China

3. College of Environment, Hohai University, Nanjing 210098, China

Abstract

Moving bed biofilm reactor (MBBR) is considered as a promising technology for wastewater treatment owing to the high biomass retention and low cost. In this study, the performance of using MBBR for partial denitrification (PD) was investigated. Denitrifying biofilm was successfully formed after 40 days with the biomass and nitrite reduction rate of 40.83 mg VSS/g carriers and 51.52 mg N/(gVSS·h), respectively. Morphology analysis by scanning electron microscope (SEM) showed that the biofilm surface was dominant by cocci, filamentous bacteria, and extracellular polymeric substances (EPS). Investigation about the influencing factors of PD found that the optimal COD/NO3−-N and pH for efficient nitrite production (nitrate to nitrite ratio: 96.49%) was 3 and 9, respectively. Moreover, Saccharimonadales was proved to be dominant functional microbes in the constructed PD systems with different influent conditions because its relative abundance exhibited good correlation with the nitrite accumulation. By analyzing the biofilm characteristics under different conditions, PD was observed to mainly occur in the range of 300–700 μm inside the biofilm, where most of the dissolved oxygen was consumed. This study confirmed the feasibility and superior performance of PD-MBBR system.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3