A CNNA-Based Lightweight Multi-Scale Tomato Pest and Disease Classification Method

Author:

Xu Yanlei1ORCID,Gao Zhiyuan1ORCID,Zhai Yuting1,Wang Qi1,Gao Zongmei2ORCID,Xu Zhao3,Zhou Yang1

Affiliation:

1. College of Information and Technology, JiLin Agricultural University, Changchun 130118, China

2. Center for Precision and Automated Agricultural Systems, Department of Biological Systems Engineering, Washington State University, Prosser, WA 99350, USA

3. Non Commissioned Officer School, Army Academy of Armored Force, Changchun 130118, China

Abstract

Tomato is generally cultivated by transplanting seedlings in ridges and furrows. During growth, there are various types of tomato pests and diseases, making it challenging to identify them simultaneously. To address this issue, conventional convolutional neural networks have been investigated, but they have a large number of parameters and are time-consuming. In this paper, we proposed a lightweight multi-scale tomato pest and disease classification network, called CNNA. Firstly, we constructed a dataset of tomato diseases and pests consisting of 27,193 images with 18 categories. Then, we compressed and optimized the ConvNeXt-Tiny network structure to maintain accuracy while significantly reducing the number of parameters. In addition, we proposed a multi-scale feature fusion module to improve the feature extraction ability of the model for different spot sizes and pests, and we proposed a global channel attention mechanism to enhance the sensitivity of the network model to spot and pest features. Finally, the model was trained and deployed to the Jetson TX2 NX for inference of tomato pests and diseases in video stream data. The experimental results showed that the proposed CNNA model outperformed the pre-trained lightweight models such as MobileNetV3, MobileVit, and ShuffleNetV2 in terms of accuracy and all parameters, with a recognition accuracy of 98.96%. Meanwhile, the error rate, inference time for a single image, network parameters, FLOPs, and model size were only 1%, 47.35 ms, 0.37 M, 237.61 M, and 1.47 MB, respectively.

Funder

Science and Technology Development Plan Project of Changchun

Jilin Provincial Science and Technology Development Plan Project

Jilin Province Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3