Affiliation:
1. Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
2. Center for Soil Pollution Control of Shandong, Shandong Department of Ecological Environment, Jinan 250012, China
Abstract
Natural-polymer-based antiscalants for various calcium scales have recently received significant attention due to their prominent structural features, such as hydroxyl, amino, and organic acids, as well as their environmental friendliness and widespread availability. In this study, a novel green antiscalant, namely modified valonia tannin extract (MVTE), was synthesized using valonia tannin extract (VTE), itaconic acid (IA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS). The structure of MVTE was characterized by Fourier transform infrared spectroscopy (FT-IR). The crystal morphology, structure, and surface elementary composition of CaCO3 were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. Results indicate that MVTE with the best anti-scale performance is prepared when the valonia dosage is 2.5 g, the initiator dosage is 6 wt.%, the reaction temperature is 75 °C, and the reaction time is 3.5 h. Moreover, MVTE shows significantly improved resistance to temperature and alkalinity compared to VE. Results from SEM, XRD, and XPS demonstrate that MVTE can interfere with the regular growth of CaCO3 crystals through chelation, dispersion, and lattice distortion. This effect results in the generation of vaterite, which inhibits the deposition of CaCO3. Meanwhile, the molecular dynamics (MD) simulation was employed to further explore the anti-scale mechanisms at an atomistic level. The results illustrate that interaction energies originate from ionic and hydrogen bonds between MVTE and calcite, which ultimately improve the anti-scale performance of MVTE. In conclusion, MVTE can be an excellent antiscalant in circulating cooling water systems.
Funder
National Natural Science Foundation of China
Shandong Province Natural Science Foundation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献