Causality Analysis with Information Geometry: A Comparison

Author:

Choong Heng Jie1ORCID,Kim Eun-jin1ORCID,He Fei2ORCID

Affiliation:

1. Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, UK

2. Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK

Abstract

The quantification of causality is vital for understanding various important phenomena in nature and laboratories, such as brain networks, environmental dynamics, and pathologies. The two most widely used methods for measuring causality are Granger Causality (GC) and Transfer Entropy (TE), which rely on measuring the improvement in the prediction of one process based on the knowledge of another process at an earlier time. However, they have their own limitations, e.g., in applications to nonlinear, non-stationary data, or non-parametric models. In this study, we propose an alternative approach to quantify causality through information geometry that overcomes such limitations. Specifically, based on the information rate that measures the rate of change of the time-dependent distribution, we develop a model-free approach called information rate causality that captures the occurrence of the causality based on the change in the distribution of one process caused by another. This measurement is suitable for analyzing numerically generated non-stationary, nonlinear data. The latter are generated by simulating different types of discrete autoregressive models which contain linear and nonlinear interactions in unidirectional and bidirectional time-series signals. Our results show that information rate causalitycan capture the coupling of both linear and nonlinear data better than GC and TE in the several examples explored in the paper.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information Geometry Approach to Analyzing Simulated EEG Signals of Alzheimer's Disease Patients and Healthy Control Subjects;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3