Author:
Ni Kailai,Wang Jianzhou,Tang Guangyu,Wei Danxiang
Abstract
Electricity load forecasting plays an essential role in improving the management efficiency of power generation systems. A large number of load forecasting models aiming at promoting the forecasting effectiveness have been put forward in the past. However, many traditional models have no consideration for the significance of data preprocessing and the constraints of individual forecasting models. Moreover, most of them only focus on the forecasting accuracy but ignore the forecasting stability, resulting in nonoptimal performance in practical applications. This paper presents a novel hybrid model that combines an advanced data preprocessing strategy, a deep neural network, and an avant-garde multi-objective optimization algorithm, overcoming the defects of traditional models and thus improving the forecasting performance effectively. In order to evaluate the validity of the proposed hybrid model, the electricity load data sampled in 30-min intervals from Queensland, Australia are used as a case to study. The experiments show that the new proposed model is obviously superior to all other traditional models. Furthermore, it provides an effective technical forecasting means for smart grid management.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献