Abstract
The paper describes approximations properties of monotonically increasing sequences of invariant subspaces of a self-adjoint operator, as well as their symmetric generalizations in a complex Hilbert space, generated by its positive powers. It is established that the operator keeps its spectrum over the dense union of these subspaces, equipped with quasi-norms, and that it is contractive. The main result is an inequality that provides an accurate estimate of errors for the best approximations in Hilbert spaces by these invariant subspaces.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献