Abstract
Application of nanofluids is aimed at enhancing the heat transfer performance the same as the utilization of a strong magnetic field. The potential of the combined effect of these passive and active methods was analyzed numerically. The silver nanofluid thermo-magnetic convection in a cubical enclosure placed in the Rayleigh–Benard configuration was investigated for various concentrations of nanoparticles and various values of magnetic induction at constant temperature difference. The nanofluid flow was considered as a two-phase flow and studied with the Euler–Euler approach. The main outcome was related to the heat transfer performance, but also a lot of attention was paid to the flow structure, which is very difficult to obtain by experimental methods. The results exhibited a flow structure with diagonal axis of symmetry in all analyzed cases and stabilizing effect of magnetic field. The heat transfer performance is indicated by the Nusselt number, which increases with an increasing value of magnetic induction but decreases with an increasing concentration of nanoparticles.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献