Affiliation:
1. School of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Abstract
To address the problems of gradient vanishing and limited feature extraction capability of traditional CNN spectrum sensing methods in deep network structures and to effectively avoid network degradation issues under deep network structures, this paper proposes a collaborative spectrum sensing method based on Residual Dense Network and attention mechanisms. This method involves stacking and normalizing the time-domain information of the signal, constructing a two-dimensional matrix, and mapping it to a grayscale image. The grayscale images are divided into training and testing sets, and the training set is used to train the neural network to extract deep features. Finally, the test set is fed into the well-trained neural network for spectrum sensing. Experimental results show that, under low signal-to-noise ratios, the proposed method demonstrates superior spectral sensing performance compared to traditional collaborative spectrum sensing methods.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献