Model-Free Adaptive Positioning Control of the Bidirectional Stick–Slip Piezoelectric Actuator with Coupled Asymmetric Flexure-Hinge Mechanisms

Author:

Zhang Zhenguo1,Dong Yikun2,Yu Shuai2,Lu Xiaohui1,Liu Keping23

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China

2. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

3. School of Electrical and Information Engineering, Jilin Engineering Normal University, Changchun 130012, China

Abstract

A model-free adaptive positioning control strategy for piezoelectric stick–slip actuators (PSSAs) with uncertain disturbance is proposed. The designed controller consists of a data-driven self-learning feedforward controller and a model-free adaptive feedback controller with a radial basis function neural network (RBFNN)-based observer. Unlike the traditional model-based control methods, the model-free adaptive control (MFAC) strategy avoids the complicated modeling process. First, the nonlinear system of the PSSA is dynamically linearized into a data model. Then, the model-free adaptive feedback controller based on a data model is designed to avoid the complicated modeling process and enhance the robustness of the control system. Simultaneously, the data-driven self-learning feedforward controller is improved to realize the high-precision control performance. Additionally, the convergence of the tracking error and the boundedness of the control output signal are proved. Finally, the experimentally obtained results illustrate the advantages and effectiveness of the developed control methodology on the bidirectional stick–slip piezoelectric actuator with coupled asymmetric flexure-hinge mechanisms. The positioning error through the proposed controller reaches 30 nm under the low-frequency condition and 200 nm under the high-frequency condition when the target position is set to 100 μm. In addition, the target position can be accurately tracked in less than 0.5 s in the presence of a 100 Hz frequency.

Funder

National Natural Science Foundation of China

Jilin Province Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3