Fuzzy-Based Efficient Healthcare Data Collection and Analysis Mechanism Using Edge Nodes in the IoMT

Author:

Khan Muhammad Nafees Ulfat1ORCID,Tang Zhiling2ORCID,Cao Weiping2,Abid Yawar Abbas34ORCID,Pan Wanghua2,Ullah Ata5ORCID

Affiliation:

1. School of Information and Communication Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

3. School of Computers and Cyberspace Security, Guilin University of Electronic Technology, Guilin 541004, China

4. Department of Computers Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan

5. Department of Computer Science, National University of Modern Languages (NUML), Islamabad 44000, Pakistan

Abstract

The Internet of Things (IoT) is an advanced technology that comprises numerous devices with carrying sensors to collect, send, and receive data. Due to its vast popularity and efficiency, it is employed in collecting crucial data for the health sector. As the sensors generate huge amounts of data, it is better for the data to be aggregated before being transmitting the data further. These sensors generate redundant data frequently and transmit the same values again and again unless there is no variation in the data. The base scheme has no mechanism to comprehend duplicate data. This problem has a negative effect on the performance of heterogeneous networks.It increases energy consumption; and requires high control overhead, and additional transmission slots are required to send data. To address the above-mentioned challenges posed by duplicate data in the IoT-based health sector, this paper presents a fuzzy data aggregation system (FDAS) that aggregates data proficiently and reduces the same range of normal data sizes to increase network performance and decrease energy consumption. The appropriate parent node is selected by implementing fuzzy logic, considering important input parameters that are crucial from the parent node selection perspective and share Boolean digit 0 for the redundant values to store in a repository for future use. This increases the network lifespan by reducing the energy consumption of sensors in heterogeneous environments. Therefore, when the complexity of the environment surges, the efficiency of FDAS remains stable. The performance of the proposed scheme has been validated using the network simulator and compared with base schemes. According to the findings, the proposed technique (FDAS) dominates in terms of reducing energy consumption in both phases, achieves better aggregation, reduces control overhead, and requires the fewest transmission slots.

Funder

Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3