Swin–UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface

Author:

Liu Pan,Song Yan,Chai Mengyu,Han Zelin,Zhang Yu

Abstract

The precise identification of micro-features on 2.25Cr1Mo0.25V steel is of great significance for understanding the mechanism of hydrogen embrittlement (HE) and evaluating the alloy’s properties of HE resistance. Presently, the convolution neural network (CNN) of deep learning is widely applied in the micro-features identification of alloy. However, with the development of the transformer in image recognition, the transformer-based neural network performs better on the learning of global and long-range semantic information than CNN and achieves higher prediction accuracy. In this work, a new transformer-based neural network model Swin–UNet++ was proposed. Specifically, the architecture of the decoder was redesigned to more precisely detect and identify the micro-feature with complex morphology (i.e., dimples) of 2.25Cr1Mo0.25V steel fracture surface. Swin–UNet++ and other segmentation models performed state-of-the-art (SOTA) were compared on the dimple dataset constructed in this work, which consists of 830 dimple scanning electron microscopy (SEM) images on 2.25Cr1Mo0.25V steel fracture surface. The segmentation results show Swin–UNet++ not only realizes the accurate identification of dimples but displays a much higher prediction accuracy and stronger robustness than Swin–Unet and UNet. Moreover, efforts from this work will also provide an important reference value to the identification of other micro-features with complex morphologies.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3