Laser Processing of Diffusion Boronized Layer Produced on Monel® Alloy 400—Microstructure, Microhardness, Corrosion and Wear Resistance Tests

Author:

Bartkowska AnetaORCID,Bartkowski DariuszORCID,Przestacki DamianORCID,Kukliński Mateusz,Miklaszewski AndrzejORCID,Kieruj Piotr

Abstract

The paper presents the results of studies of microstructure, mechanical and physicochemical properties of surface layers produced by laser modification of the diffusion boron layer on Monel® Alloy 400. The diffusion boron layers were produced at 950 °C for 6 h. The gas-contact method was used in an open retort furnace. The process was carried out in a powder mixture containing B4C carbide as a boron source. The next stage was the modification of the boron layer with a diode laser beam of a nominal power of 3 kW. A constant power of 1400 W of the laser beam was used. The scanning speed was variable (successively 5 m/min, 25 m/min, 50 m/min). In order to determine the best parameters, single tracks were created, after which multiple tracks were prepared using previously selected parameters. It was found that both the diffusion borided layer and the laser modified layer had better properties than the substrate material. Both these processes contributed to an increase in corrosion resistance, hardness and wear resistance. It was also found that laser modification caused a slight deterioration of the properties in comparison with the diffusion borided layer. However, the laser modification process resulted in the production of a much thicker layer.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3